资讯中心
资讯中心

当前位置:首页 >> 资讯中心 >> 行业知识

3D线激光传感器

3D线激光传感器简介

在传统的2D视觉中,一套详细的解决方案最基础的是相机、镜头、和光源。

根据客户的需求以及现场的生产环境,通过一些公式计算出符合要求的相机和镜头,最后根据客户的成本需求来选出最合适的相机加镜头。

最后的光源是整套解决方案中比较难的一个点,要根据客户所测物件的不同来选择合适的光源,保证能够清晰的成像。

大家可以看出来,2D视觉对于工程师的要求比较高,要拥有丰富的项目经验,有一定的光学和软件知识,而3D相机相对来说就要简单一些。

一般3D相机都会集成在一个框架内,不会像2D视觉系统那样区分开来。3D机器视觉镜头的光学系统一般是由若干组透镜组成。每组透镜可能是一个单透镜,也可能是由两片或两片以上单片透镜互相胶合而成。

3D线激光传感器.png

在3D相机中,取代光源的是激光发射器,通过复杂的光学系统设计,激光发射器发出的激光会形成一条直线,激光投射到物体表面就会形成反射,在光学系统的设计下,反射光会被镜头捕捉到,最后通过镜头反射到感光芯片上。

因此,3D相机内部最重要的三个部件分别为激光发射器,镜头和感光芯片,同时还会加一些FPGA或者ARM用于图形处理,比如图像算法以及图像滤波。

一般情况下,激光发射器需要优秀的光学工程师进行设计,比如不同的透镜反射出来的激光也会有不同的效果;镜头基本上也都是正常我们看见的镜头,感光芯片一般会选择高精度的CMOS芯片。

一般我们把激光线方向称为X方向,也就是激光照射出来的那条线定义为X轴,高度为Z方向,通过一次静态拍照,我们可以得到X和Z两个方向的数据,那么Y方向呢,我们一般把运动方向记为Y方向,也就是说。

我们可以通过移动相机或者移动物体,并且让相机持续不断的拍照,就形成了连续的Y方向数据,最后组合在一起,就是我们所需要的3D数据了。

原理

三角测距法又称主动三角法,是基于光学三角原理,根据光源、物体和检测器三者之间的几何成像关系来确定空间物体各点的三维坐标。

在实际测量过程中,它常用激光作为光源,用CCD相机作为检测器。这种方式主要用于工业勘探、工件表面粗糙度检测、轮胎检测、飞机检测等工业、航空、军事领域,在消费电子类产品还不曾涉及。

三角测距法原理.png

主要参数

在山东中创科达2D视觉检测中,会有许多专业的术语名词,比如视场,分辨率,重复精度等,3D视觉中也是如此。

在3D视觉中大致以以下术语:

视野范围/视场(FOV)

是指在某一工作距离下传感器激光线方向能扫到的最大宽度。在2D视觉中,视场一般是两个值,即X方向*Y方向,而3D视觉只有一个值。

一般情况下就是在传感器最佳工作距离下激光线的长度,注意是在工作距离下的长度,毕竟激光发射出来形成一个光面,如果没有遮挡理论上是无限长的。

测量范围

传感器的近视场到远视场的距离。这个概念有点像2D视觉中的景深,即Z轴可清晰成像的范围。

工作原理

传感器下表面到被测物表面的距离。这里的传感器指的就是相机,每台相机的工作距离是不一样的,一定要记住工作距离,不然选好了相机发现客户现场的安装高度达不到相机的工作距离要求,那么你前期的准备工作就全部浪费掉了。

分辨率

传感器可以识别的最小尺寸。跟图像传感器一般是CMOS芯片的晶圆尺寸也就是感光元件有关系。

线性度

也叫准确度,直线度。一般指的是Z线性度,为偏差值(参考值与测量值的差值)与测量范围的比值。

重复精度

也叫做重复性。是指将被测物重复扫描4100次后的最大偏差值。

对比2D优势及特点

可检测高度信息。

可进行高度方向上的矫正。

安装架设方便。

大景深,大视野。

物体表面颜色对测量结果影响小。

可计算段差,缝隙,平面度等可以通过高度确定的特征。

可对整个产品的空间上有一定认知,可对照数模进行全检。

体积小,原理简单,架设简单。